# Linguistic Knowledge and Transferability of Contextual Representations

Nelson F. Liu Matt Gardner Yonatan Belinkov Matthew E. Peters Noah A. Smith

NAACL19

Xiachong Feng

# Outline

- Author
- Tasks
- Model
- Experiment
- Multilingual BERT
- Conclusion

# Author



- Nelson F. Liu
- University of Washington
- B.S. Undergraduate
- Scikit-learn : Google Summer of Code Developer

PUBLICATIONS

• AllenNLP : research intern

| [1] | Linguistic Knowledge and Transferability of Contextual Representations<br>Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A. Smith. To<br>appear in Proceedings of the Conference of the North American Chapter of the Association for<br>Computational Linguistics (NAACL 2019). June 2019.                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2] | Inoculation by Fine-Tuning: A Method for Analyzing Challenge Datasets<br>Nelson F. Liu, Roy Schwartz, and Noah A. Smith. To appear in Proceedings of the Conference<br>of the North American Chapter of the Association for Computational Linguistics (NAACL 2019).<br>June 2019.                                                       |
| [3] | LSTMs Exploit Linguistic Attributes of Data<br>Nelson F. Liu, Omer Levy, Roy Schwartz, Chenhao Tan and Noah A. Smith. In Proceedings<br>of the ACL Workshop on Representation Learning for NLP (RepL4NLP 2018). July 2018.<br>Best Paper Award.                                                                                         |
| [4] | AllenNLP: A Deep Semantic Natural Language Processing Platform<br>Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu,<br>Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. In Proceedings of the ACL Workshop<br>for Natural Language Processing Open Source Software (NLP-OSS 2018). July 2018. |
| [5] | Discovering Phonesthemes with Sparse Regularization<br>Nelson F. Liu, Gina-Anne Levow, and Noah A. Smith. In Proceedings of the NAACL Workshop<br>on Subword and Character Level Models in NLP (SCLeM 2018). June 2018.                                                                                                                 |
| [6] | ELISA System Description for LoReHLT 2017<br>Leon Cheung, Thamme Gowda, Ulf Hermjakob, Nelson Liu, Jonathan May, Alexandra Mayn,                                                                                                                                                                                                        |

- Nima Pourdamghani, Michael Pust, Kevin Knight, 32 others (names ordered alphabetically and by affiliation). In *Proceedings of the NIST LoReHLT 2017 Workshop*. September 2017.
- [7] Crowdsourcing Multiple Choice Science Questions
  - Johannes Welbl, Nelson F. Liu, and Matt Gardner. In Proceedings of the EMNLP Workshop on Noisy User-generated Text (WNUT 2017). September 2017.

# Outline

- Author
- Tasks
  - Sixteen diverse English probing tasks

#### 1. Token Labeling

- 2. Segmentation
- 3. Pairwise Relations
- Model
- Experiment
- Multilingual BERT
- Conclusion

# Part-of-speech tagging (POS)

• Whether CWRs capture **basic syntax** 



她在海边卖贝壳

# CCG supertagging (CCG)

- The vectors' fine-grained information about the syntactic roles of words in context.
- CCG is lexicalized grammar formalism that has two kinds of categories:
- **atomic categories** (S, N, NP, and PP for sentence, nouns, noun phrases and prepositional phrases, respectively)
- complex categories that contain two parts: an argument and a result, denoted by slashes ('\' or '/') indicating whether the argument is expected to lie to the right or left

| Mr. | Vinken | is             | chairman | of         | Elsevier | N.V. | , the      | Dutch | publishing | group | - |
|-----|--------|----------------|----------|------------|----------|------|------------|-------|------------|-------|---|
| N/N | N      | (S[dcl]\NP)/NP | N        | (NP\NP)/NP | N/N      | N    | , NP[nb]/N | N/N   | N/N        | N     | + |

https://www.sciencedirect.com/science/article/pii/S0925231217319124

#### Syntactic constituency ancestor tagging

- The vectors' knowledge of hierarchical syntax.
- Constituent parsing is a core problem in NLP where the goal is to obtain the syntactic structure of sentences expressed as a phrase structure tree.
- For a given word, the probing model is trained to predict the constituent label of its parent (Parent), grandparent (GParent), or great-grandparent (GGParent) in the phrase-structure tree (from the PTB).



# Semantic tagging task (ST)

- Tokens are assigned labels that reflect their **semantic role** in context.
- These semantic tags assess lexical semantics.



https://pdfs.semanticscholar.org/5322/d6d76dbba156ab357dfa58330cc84c425e6c.pdf

## Preposition supersense disambiguation

- This task is a specialized kind of word sense disambiguation, and examines one facet of lexical semantic knowledge.
- The model is trained and evaluated on single-token prepositions (rather than making a decision for every token in a sequence).
  - (1) I was booked for/DURATION 2 nights at/LOCUS this hotel in/TIME Oct 2007.
  - (2) I went to/GOAL ohm after/EXPLANATION~TIME reading some of/QUANTITY~WHOLE the reviews.
  - (3) It was very upsetting to see this kind of/SPECIES behavior especially in\_front\_of/LOCUS my/SOCIALREL→GESTALT four year\_old.

# **Event factuality (EF) task**

- Labeling **phrases** with the factuality of the events they describe
- The model is trained to predict a (non)factuality value in the range [-3, 3].
- This task is treated as a regression problem, where a prediction is made only for tokens corresponding to events (rather than every token in a sequence).

Jo didn't remember to leave. leaving did not happen Jo didn't remember leaving.

# Outline

- Author
- Tasks
  - Sixteen diverse English probing tasks
  - 1. Token Labeling

#### 2. Segmentation

- 3. Pairwise Relations
- Model
- Experiment
- Multilingual BERT
- Conclusion

# Syntactic chunking (Chunk)

- Whether CWR s contain notions of **spans and boundaries**
- Segment text into shallow constituent chunks.



# Named entity recognition (NER)

• Whether CWRs encode information about entity types.



# Grammatical error detection (GED)

- Whether embeddings encode features that indicate anomalies in their input
- Task of identifying tokens which need to be edited in order to produce a grammatically correct sentence.

| E  | Grammatical<br>Error Detection | Ι    | am   | here | at      | business |
|----|--------------------------------|------|------|------|---------|----------|
| 1) | Grammaticality<br>Checking     | 0    | 0    | 0    | 1       | 0        |
| 2) | Error Type<br>Classification   | None | None | None | PRP_LXC | None     |

# **Conjunct identification (Conj)**

• Requires highly specific syntactic knowledge.



# Outline

- Author
- Tasks

#### • Sixteen diverse English probing tasks

- 1. Token Labeling
- 2. Segmentation
- 3. Pairwise Relations
- Model
- Experiment
- Multilingual BERT
- Conclusion

#### **Pairwise Relations**

- Examine whether relationships between words are encoded in CWRs.
- Syntactic dependency arc prediction
  - The model is trained to predict whether the sentence's syntactic dependency parse contains a dependency arc two words

#### syntactic dependency arc classification

- The model is trained to predict the type of syntactic relation that link them (the label on that dependency arc).
- Semantic dependency arc prediction
- Semantic dependency arc classification
- Coreference arc prediction
  - The model is trained to predict whether two entities corefer from their CWRs.

# Outline

- Author
- Tasks
- Model
- Experiment
- Multilingual BERT
- Conclusion

#### **ELMo (Embeddings from Language Models)**

Forward language model

$$p(t_1, t_2, \ldots, t_N) = \prod_{k=1}^N p(t_k \mid t_1, t_2, \ldots, t_{k-1}).$$

Backward language model

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^N p(t_k \mid t_{k+1}, t_{k+2}, \dots, t_N)$$



 Jointly maximizes the log likelihood of the forward and backward directions

$$\sum_{k=1}^{N} (\log p(t_k \mid t_1, \dots, t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k \mid t_{k+1}, \dots, t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s)))$$

- $\Theta_x$  Token representation
- $\Theta_s$  Softmax layer

#### **OpenAl GPT(Generative Pre-trained Transformer)**

 Use a standard language modeling objective to maximize the following likelihood:

$$L_1(\mathcal{U}) = \sum_i \log P(u_i | u_{i-k}, \dots, u_{i-1}; \Theta)$$

A multi-layer transformer <u>decoder</u> for the language model



# BERT(Bidirectional Encoder Representations from Transformers)

- BERT's model architecture is a multi-layer bidirectional
   Transformer encoder.
   BERT
  - L: number of layers
  - H: hidden size
  - A: number of self-attention heads.
- Model
  - BERTBASE : L=12, H=768, A=12, Total

Parameters=110M(have an identical model size as OpenAl GPT for comparison purposes)

- BERTLARGE : L=24, H=1024, A=16, Total Parameters=340M
- Note:
  - BERT: Bidirectional Transformer encoder
  - OpenAI: Left-context-only Transformer decoder



#### Contextualizers

- ELMo (original) uses a 2-layer LSTM
- ELMo (4 layer) uses a 4-layer LSTM
- ELMo (transformer) uses a 6-layer transformer
- OpenAl transformer is a left-to-right 12-layer transformer language model
- BERT (base, cased), which uses a 12-layer transformer
- BERT (large, cased), which uses a 24-layer transformer



# **Probing Model**

 Use a linear model as our probing model; limiting its capacity enables us to focus on what information can be easily extracted from CWRs.



# Outline

- Author
- Tasks
- Model
- Experiment
  - 1. To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks
  - 2. Universal Language Model Fine-tuning for Text Classification ACL18
- Multilingual BERT
- Conclusion

#### **Tasks**

| Pretrained Representation                          | POS   |       |       |       | Supersense I |       |       |       |         | ense ID |       |
|----------------------------------------------------|-------|-------|-------|-------|--------------|-------|-------|-------|---------|---------|-------|
|                                                    | Avg.  | CCG   | PTB   | EWT   | Chunk        | NER   | ST    | GED   | PS-Role | PS-Fxn  | EF    |
| ELMo (original) best layer                         | 81.58 | 93.31 | 97.26 | 95.61 | 90.04        | 82.85 | 93.82 | 29.37 | 75.44   | 84.87   | 73.20 |
| ELMo (4-layer) best layer                          | 81.58 | 93.81 | 97.31 | 95.60 | 89.78        | 82.06 | 94.18 | 29.24 | 74.78   | 85.96   | 73.03 |
| ELMo (transformer) best layer                      | 80.97 | 92.68 | 97.09 | 95.13 | 93.06        | 81.21 | 93.78 | 30.80 | 72.81   | 82.24   | 70.88 |
| OpenAI transformer best layer                      | 75.01 | 82.69 | 93.82 | 91.28 | 86.06        | 58.14 | 87.81 | 33.10 | 66.23   | 76.97   | 74.03 |
| BERT (base, cased) best layer                      | 84.09 | 93.67 | 96.95 | 95.21 | 92.64        | 82.71 | 93.72 | 43.30 | 79.61   | 87.94   | 75.11 |
| BERT (large, cased) best layer                     | 85.07 | 94.28 | 96.73 | 95.80 | 93.64        | 84.44 | 93.83 | 46.46 | 79.17   | 90.13   | 76.25 |
| GloVe (840B.300d)                                  | 59.94 | 71.58 | 90.49 | 83.93 | 62.28        | 53.22 | 80.92 | 14.94 | 40.79   | 51.54   | 49.70 |
| Previous state of the art<br>(without pretraining) | 83.44 | 94.7  | 97.96 | 95.82 | 95.77        | 91.38 | 95.15 | 39.83 | 66.89   | 78.29   | 77.10 |

| ELMo (original), Layer 0    | 78.27 | 77.73 | 82.05 | 78.52 |
|-----------------------------|-------|-------|-------|-------|
| ELMo (original), Layer 1    | 89.04 | 86.46 | 96.13 | 93.01 |
| ELMo (original), Layer 2    | 88.33 | 85.34 | 94.72 | 91.32 |
| ELMo (original), Scalar Mix | 89.30 | 86.56 | 95.81 | 91.69 |

| Pretrained Representation                          |       |       | PC    | DS    |       |       | den statuteren |       | Superse | ense ID |       |
|----------------------------------------------------|-------|-------|-------|-------|-------|-------|----------------|-------|---------|---------|-------|
|                                                    | Avg.  | CCG   | РТВ   | EWT   | Chunk | NER   | ST             | GED   | PS-Role | PS-Fxn  | EF    |
| ELMo (original) best layer                         | 81.58 | 93.31 | 97.26 | 95.61 | 90.04 | 82.85 | 93.82          | 29.37 | 75.44   | 84.87   | 73.20 |
| ELMo (4-layer) best layer                          | 81.58 | 93.81 | 97.31 | 95.60 | 89.78 | 82.06 | 94.18          | 29.24 | 74.78   | 85.96   | 73.03 |
| ELMo (transformer) best layer                      | 80.97 | 92.68 | 97.09 | 95.13 | 93.06 | 81.21 | 93.78          | 30.80 | 72.81   | 82.24   | 70.88 |
| OpenAI transformer best layer                      | 75.01 | 82.69 | 93.82 | 91.28 | 86.06 | 58.14 | 87.81          | 33.10 | 66.23   | 76.97   | 74.03 |
| BERT (base, cased) best layer                      | 84.09 | 93.67 | 96.95 | 95.21 | 92.64 | 82.71 | 93.72          | 43.30 | 79.61   | 87.94   | 75.11 |
| BERT (large, cased) best layer                     | 85.07 | 94.28 | 96.73 | 95.80 | 93.64 | 84.44 | 93.83          | 46.46 | 79.17   | 90.13   | 76.25 |
| GloVe (840B.300d)                                  | 59.94 | 71.58 | 90.49 | 83.93 | 62.28 | 53.22 | 80.92          | 14.94 | 40.79   | 51.54   | 49.70 |
| Previous state of the art<br>(without pretraining) | 83.44 | 94.7  | 97.96 | 95.82 | 95.77 | 91.38 | 95.15          | 39.83 | 66.89   | 78.29   | 77.10 |

- The **Best layerwise** linear probing model for each contextualizer.
- A **GloVe-based** linear probing baseline.
- The previous state of the art.(SOTA)

| Pretrained Representation                          |       |       | PO    | DS    | Supersense ID |       |       |       |         | ense ID |       |
|----------------------------------------------------|-------|-------|-------|-------|---------------|-------|-------|-------|---------|---------|-------|
| rionaniou roprosoniation                           | Avg.  | CCG   | PTB   | EWT   | Chunk         | NER   | ST    | GED   | PS-Role | PS-Fxn  | EF    |
| ELMo (original) best layer                         | 81.58 | 93.31 | 97.26 | 95.61 | 90.04         | 82.85 | 93.82 | 29.37 | 75.44   | 84.87   | 73.20 |
| ELMo (4-layer) best layer                          | 81.58 | 93.81 | 97.31 | 95.60 | 89.78         | 82.06 | 94.18 | 29.24 | 74.78   | 85.96   | 73.03 |
| ELMo (transformer) best layer                      | 80.97 | 92.68 | 97.09 | 95.13 | 93.06         | 81.21 | 93.78 | 30.80 | 72.81   | 82.24   | 70.88 |
| OpenAI transformer best layer                      | 75.01 | 82.69 | 93.82 | 91.28 | 86.06         | 58.14 | 87.81 | 33.10 | 66.23   | 76.97   | 74.03 |
| BERT (base, cased) best layer                      | 84.09 | 93.67 | 96.95 | 95.21 | 92.64         | 82.71 | 93.72 | 43.30 | 79.61   | 87.94   | 75.11 |
| BERT (large, cased) best layer                     | 85.07 | 94.28 | 96.73 | 95.80 | 93.64         | 84.44 | 93.83 | 46.46 | 79.17   | 90.13   | 76.25 |
| GloVe (840B.300d)                                  | 59.94 | 71.58 | 90.49 | 83.93 | 62.28         | 53.22 | 80.92 | 14.94 | 40.79   | 51.54   | 49.70 |
| Previous state of the art<br>(without pretraining) | 83.44 | 94.7  | 97.96 | 95.82 | 95.77         | 91.38 | 95.15 | 39.83 | 66.89   | 78.29   | 77.10 |

• In all cases, CWRs perform significantly better than the noncontextual baseline.

| Pretrained Representation                          |       |       | PO    | OS    |       |       |       |       | Superse | Supersense ID |       |  |
|----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------|---------------|-------|--|
| richande representation                            | Avg.  | CCG   | РТВ   | EWT   | Chunk | NER   | ST    | GED   | PS-Role | PS-Fxn        | EF    |  |
| ELMo (original) best layer                         | 81.58 | 93.31 | 97.26 | 95.61 | 90.04 | 82.85 | 93.82 | 29.37 | 75.44   | 84.87         | 73.20 |  |
| ELMo (4-layer) best layer                          | 81.58 | 93.81 | 97.31 | 95.60 | 89.78 | 82.06 | 94.18 | 29.24 | 74.78   | 85.96         | 73.03 |  |
| ELMo (transformer) best layer                      | 80.97 | 92.68 | 97.09 | 95.13 | 93.06 | 81.21 | 93.78 | 30.80 | 72.81   | 82.24         | 70.88 |  |
| OpenAI transformer best layer                      | 75.01 | 82.69 | 93.82 | 91.28 | 86.06 | 58.14 | 87.81 | 33.10 | 66.23   | 76.97         | 74.03 |  |
| BERT (base, cased) best layer                      | 84.09 | 93.67 | 96.95 | 95.21 | 92.64 | 82.71 | 93.72 | 43.30 | 79.61   | 87.94         | 75.11 |  |
| BERT (large, cased) best layer                     | 85.07 | 94.28 | 96.73 | 95.80 | 93.64 | 84.44 | 93.83 | 46.46 | 79.17   | 90.13         | 76.25 |  |
| GloVe (840B.300d)                                  | 59.94 | 71.58 | 90.49 | 83.93 | 62.28 | 53.22 | 80.92 | 14.94 | 40.79   | 51.54         | 49.70 |  |
| Previous state of the art<br>(without pretraining) | 83.44 | 94.7  | 97.96 | 95.82 | 95.77 | 91.38 | 95.15 | 39.83 | 66.89   | 78.29         | 77.10 |  |

• Probing models rivaling or exceeding the performance of (often carefully tuned and task-specific) state-of-the-art models.

| Pretrained Representation                          |       |       | PO    | OS    |       |       |       | Superse |         |        |       |
|----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|---------|---------|--------|-------|
| r reu anne e reepresentation                       | Avg.  | CCG   | РТВ   | EWT   | Chunk | NER   | ST    | GED     | PS-Role | PS-Fxn | EF    |
| ELMo (original) best layer                         | 81.58 | 93.31 | 97.26 | 95.61 | 90.04 | 82.85 | 93.82 | 29.37   | 75.44   | 84.87  | 73.20 |
| ELMo (4-layer) best layer                          | 81.58 | 93.81 | 97.31 | 95.60 | 89.78 | 82.06 | 94.18 | 29.24   | 74.78   | 85.96  | 73.03 |
| ELMo (transformer) best layer                      | 80.97 | 92.68 | 97.09 | 95.13 | 93.06 | 81.21 | 93.78 | 30.80   | 72.81   | 82.24  | 70.88 |
| OpenAI transformer best layer                      | 75.01 | 82.69 | 93.82 | 91.28 | 86.06 | 58.14 | 87.81 | 33.10   | 66.23   | 76.97  | 74.03 |
| BERT (base, cased) best layer                      | 84.09 | 93.67 | 96.95 | 95.21 | 92.64 | 82.71 | 93.72 | 43.30   | 79.61   | 87.94  | 75.11 |
| BERT (large, cased) best layer                     | 85.07 | 94.28 | 96.73 | 95.80 | 93.64 | 84.44 | 93.83 | 46.46   | 79.17   | 90.13  | 76.25 |
| GloVe (840B.300d)                                  | 59.94 | 71.58 | 90.49 | 83.93 | 62.28 | 53.22 | 80.92 | 14.94   | 40.79   | 51.54  | 49.70 |
| Previous state of the art<br>(without pretraining) | 83.44 | 94.7  | 97.96 | 95.82 | 95.77 | 91.38 | 95.15 | 39.83   | 66.89   | 78.29  | 77.10 |

 ELMo (4-layer) and ELMo (original) are essentially even, though both recurrent models outperform ELMo (transformer).

| Pretrained Representation                          |       |       | PO    | OS    |       |       |       | Superse |         |        |       |
|----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|---------|---------|--------|-------|
|                                                    | Avg.  | CCG   | РТВ   | EWT   | Chunk | NER   | ST    | GED     | PS-Role | PS-Fxn | EF    |
| ELMo (original) best layer                         | 81.58 | 93.31 | 97.26 | 95.61 | 90.04 | 82.85 | 93.82 | 29.37   | 75.44   | 84.87  | 73.20 |
| ELMo (4-layer) best layer                          | 81.58 | 93.81 | 97.31 | 95.60 | 89.78 | 82.06 | 94.18 | 29.24   | 74.78   | 85.96  | 73.03 |
| ELMo (transformer) best layer                      | 80.97 | 92.68 | 97.09 | 95.13 | 93.06 | 81.21 | 93.78 | 30.80   | 72.81   | 82.24  | 70.88 |
| OpenAI transformer best layer                      | 75.01 | 82.69 | 93.82 | 91.28 | 86.06 | 58.14 | 87.81 | 33.10   | 66.23   | 76.97  | 74.03 |
| BERT (base, cased) best layer                      | 84.09 | 93.67 | 96.95 | 95.21 | 92.64 | 82.71 | 93.72 | 43.30   | 79.61   | 87.94  | 75.11 |
| BERT (large, cased) best layer                     | 85.07 | 94.28 | 96.73 | 95.80 | 93.64 | 84.44 | 93.83 | 46.46   | 79.17   | 90.13  | 76.25 |
| GloVe (840B.300d)                                  | 59.94 | 71.58 | 90.49 | 83.93 | 62.28 | 53.22 | 80.92 | 14.94   | 40.79   | 51.54  | 49.70 |
| Previous state of the art<br>(without pretraining) | 83.44 | 94.7  | 97.96 | 95.82 | 95.77 | 91.38 | 95.15 | 39.83   | 66.89   | 78.29  | 77.10 |

- OpenAI transformer significantly underperforms the ELMo models and BERT. Given that it is also the only model trained in a unidirectional (left-to-right) fashion, this reaffirms that bidirectionality is a crucial component for the highestquality contextualizers
- The OpenAI transformer is the only model trained on lowercased text, which hinders its performance on tasks like NER.

| Pretrained Representation                          |       |       | PO    | OS    |       |       |       |       | Superse |        |       |
|----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------|-------|
| r reu anno e r representation                      | Avg.  | CCG   | PTB   | EWT   | Chunk | NER   | ST    | GED   | PS-Role | PS-Fxn | EF    |
| ELMo (original) best layer                         | 81.58 | 93.31 | 97.26 | 95.61 | 90.04 | 82.85 | 93.82 | 29.37 | 75.44   | 84.87  | 73.20 |
| ELMo (4-layer) best layer                          | 81.58 | 93.81 | 97.31 | 95.60 | 89.78 | 82.06 | 94.18 | 29.24 | 74.78   | 85.96  | 73.03 |
| ELMo (transformer) best layer                      | 80.97 | 92.68 | 97.09 | 95.13 | 93.06 | 81.21 | 93.78 | 30.80 | 72.81   | 82.24  | 70.88 |
| OpenAI transformer best layer                      | 75.01 | 82.69 | 93.82 | 91.28 | 86.06 | 58.14 | 87.81 | 33.10 | 66.23   | 76.97  | 74.03 |
| BERT (base, cased) best layer                      | 84.09 | 93.67 | 96.95 | 95.21 | 92.64 | 82.71 | 93.72 | 43.30 | 79.61   | 87.94  | 75.11 |
| BERT (large, cased) best layer                     | 85.07 | 94.28 | 96.73 | 95.80 | 93.64 | 84.44 | 93.83 | 46.46 | 79.17   | 90.13  | 76.25 |
| GloVe (840B.300d)                                  | 59.94 | 71.58 | 90.49 | 83.93 | 62.28 | 53.22 | 80.92 | 14.94 | 40.79   | 51.54  | 49.70 |
| Previous state of the art<br>(without pretraining) | 83.44 | 94.7  | 97.96 | 95.82 | 95.77 | 91.38 | 95.15 | 39.83 | 66.89   | 78.29  | 77.10 |

• BERT significantly improves over the ELMo and OpenAI models.

| Pretrained Representation                          |       |       | PO    | DS    |       |       |       |       | Superse |        |       |
|----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------|-------|
|                                                    | Avg.  | CCG   | РТВ   | EWT   | Chunk | NER   | ST    | GED   | PS-Role | PS-Fxn | EF    |
| ELMo (original) best layer                         | 81.58 | 93.31 | 97.26 | 95.61 | 90.04 | 82.85 | 93.82 | 29.37 | 75.44   | 84.87  | 73.20 |
| ELMo (4-layer) best layer                          | 81.58 | 93.81 | 97.31 | 95.60 | 89.78 | 82.06 | 94.18 | 29.24 | 74.78   | 85.96  | 73.03 |
| ELMo (transformer) best layer                      | 80.97 | 92.68 | 97.09 | 95.13 | 93.06 | 81.21 | 93.78 | 30.80 | 72.81   | 82.24  | 70.88 |
| OpenAI transformer best layer                      | 75.01 | 82.69 | 93.82 | 91.28 | 86.06 | 58.14 | 87.81 | 33.10 | 66.23   | 76.97  | 74.03 |
| BERT (base, cased) best layer                      | 84.09 | 93.67 | 96.95 | 95.21 | 92.64 | 82.71 | 93.72 | 43.30 | 79.61   | 87.94  | 75.11 |
| BERT (large, cased) best layer                     | 85.07 | 94.28 | 96.73 | 95.80 | 93.64 | 84.44 | 93.83 | 46.46 | 79.17   | 90.13  | 76.25 |
| GloVe (840B.300d)                                  | 59.94 | 71.58 | 90.49 | 83.93 | 62.28 | 53.22 | 80.92 | 14.94 | 40.79   | 51.54  | 49.70 |
| Previous state of the art<br>(without pretraining) | 83.44 | 94.7  | 97.96 | 95.82 | 95.77 | 91.38 | 95.15 | 39.83 | 66.89   | 78.29  | 77.10 |

 Current methods for CWR do not capture much transferable information about entities and coreference phenomena in their input

| Pretrained Representation                          | POS   |       |       |       | POS Supersense ID |       |       |       |         |        |       |
|----------------------------------------------------|-------|-------|-------|-------|-------------------|-------|-------|-------|---------|--------|-------|
|                                                    | Avg.  | CCG   | PTB   | EWT   | Chunk             | NER   | ST    | GED   | PS-Role | PS-Fxn | EF    |
| ELMo (original) best layer                         | 81.58 | 93.31 | 97.26 | 95.61 | 90.04             | 82.85 | 93.82 | 29.37 | 75.44   | 84.87  | 73.20 |
| ELMo (4-layer) best layer                          | 81.58 | 93.81 | 97.31 | 95.60 | 89.78             | 82.06 | 94.18 | 29.24 | 74.78   | 85.96  | 73.03 |
| ELMo (transformer) best layer                      | 80.97 | 92.68 | 97.09 | 95.13 | 93.06             | 81.21 | 93.78 | 30.80 | 72.81   | 82.24  | 70.88 |
| OpenAI transformer best layer                      | 75.01 | 82.69 | 93.82 | 91.28 | 86.06             | 58.14 | 87.81 | 33.10 | 66.23   | 76.97  | 74.03 |
| BERT (base, cased) best layer                      | 84.09 | 93.67 | 96.95 | 95.21 | 92.64             | 82.71 | 93.72 | 43.30 | 79.61   | 87.94  | 75.11 |
| BERT (large, cased) best layer                     | 85.07 | 94.28 | 96.73 | 95.80 | 93.64             | 84.44 | 93.83 | 46.46 | 79.17   | 90.13  | 76.25 |
| GloVe (840B.300d)                                  | 59.94 | 71.58 | 90.49 | 83.93 | 62.28             | 53.22 | 80.92 | 14.94 | 40.79   | 51.54  | 49.70 |
| Previous state of the art<br>(without pretraining) | 83.44 | 94.7  | 97.96 | 95.82 | 95.77             | 91.38 | 95.15 | 39.83 | 66.89   | 78.29  | 77.10 |

- The CWR simply does not encode the pertinent information or any predictive correlates
- The probing model does not have the capacity necessary to extract the information or predictive correlates from the vector.

| Probing Model                                 | NER                            | GED                            | Conj                           | GGParent                       |                                                |
|-----------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------------------|
| Linear<br>MLP (1024d)<br>LSTM (200d) + Linear | 82.85<br>87.19<br><b>88.08</b> | 29.37<br>47.45<br><b>48.90</b> | 38.72<br>55.09<br><b>78.21</b> | 67.50<br>78.80<br><b>84.96</b> | Adding more parameters<br>to the probing model |
| BiLSTM (512d)<br>+ MLP (1024d)                | 90.05                          | 48.34                          | 87.07                          | 90.38                          | <ul> <li>Full-featured model</li> </ul>        |

#### ELMo (original) pretrained contextualizer

| Probing Model                  | NER   | GED   | Conj  | GGParent |
|--------------------------------|-------|-------|-------|----------|
| Linear                         | 82.85 | 29.37 | 38.72 | 67.50    |
| MLP (1024d)                    | 87.19 | 47.45 | 55.09 | 78.80    |
| LSTM (200d) + Linear           | 88.08 | 48.90 | 78.21 | 84.96    |
| BiLSTM (512d)<br>+ MLP (1024d) | 90.05 | 48.34 | 87.07 | 90.38    |

 Adding more parameters (either by replacing the linear model with a MLP, or using a contextual probing model) leads to significant gains over the linear probing model

| Probing Model                  | NER   | GED   | Conj  | GGParent |
|--------------------------------|-------|-------|-------|----------|
| Linear                         | 82.85 | 29.37 | 38.72 | 67.50    |
| MLP (1024d)                    | 87.19 | 47.45 | 55.09 | 78.80    |
| LSTM (200d) + Linear           | 88.08 | 48.90 | 78.21 | 84.96    |
| BiLSTM (512d)<br>+ MLP (1024d) | 90.05 | 48.34 | 87.07 | 90.38    |

 Very similar performance between the MLP and LSTM + Linear models—this indicates that the probing model simply needed more capacity to extract the necessary information from the CWRs.

|                                            | Probing Model                                 | NER                            | GED                            | Conj                           | GGParent                       |
|--------------------------------------------|-----------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| nearly the same<br>number of<br>parameters | Linear<br>MLP (1024d)<br>LSTM (200d) + Linear | 82.85<br>87.19<br><b>88.08</b> | 29.37<br>47.45<br><b>48.90</b> | 38.72<br>55.09<br><b>78.21</b> | 67.50<br>78.80<br><b>84.96</b> |
|                                            | BiLSTM (512d)<br>+ MLP (1024d)                | 90.05                          | 48.34                          | 87.07                          | 90.38                          |

- Adding parameters as a task-trained component of our probing model leads to large gains over simply adding parameters to the probing model.
- This indicates that the pretrained contextualizers do not capture the information necessary for the task, since such information is learnable by a task-specific contextualizer.

| Probing Model                                 | NER                            | GED                            | Conj                           | GGParent                       |
|-----------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Linear<br>MLP (1024d)<br>LSTM (200d) + Linear | 82.85<br>87.19<br><b>88.08</b> | 29.37<br>47.45<br><b>48.90</b> | 38.72<br>55.09<br><b>78.21</b> | 67.50<br>78.80<br><b>84.96</b> |
| BiLSTM (512d)<br>+ MLP (1024d)                | 90.05                          | 48.34                          | 87.07                          | 90.38                          |

- Confirm that task-trained contextualization is important when the end task requires specific information that may not be captured by the pretraining task
- Such end-task specific contextualization can come from either fine-tuning CWRs or using fixed output features as inputs to a task-trained contextualizer

## To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks

| Ductucining   | Adaptation   | NER SA            |       | Nat. lang | g. inference | Semantic textual similarity |      |       |  |
|---------------|--------------|-------------------|-------|-----------|--------------|-----------------------------|------|-------|--|
| Pretraining   | Adaptation   | <b>CoNLL 2003</b> | SST-2 | MNLI      | SICK-E       | SICK-R                      | MRPC | STS-B |  |
| Skip-thoughts | *            |                   | 81.8  | 62.9      |              | 86.6                        | 75.8 | 71.8  |  |
|               | *            | 91.7              | 91.8  | 79.6      | 86.3         | 86.1                        | 76.0 | 75.9  |  |
| ELMo          | ٠            | 91.9              | 91.2  | 76.4      | 83.3         | 83.3                        | 74.7 | 75.5  |  |
|               | $\Delta = 0$ | 0.2               | -0.6  | -3.2      | -3.3         | -2.8                        | -1.3 | -0.4  |  |
| 6             | *            | 92.2              | 93.0  | 84.6      | 84.8         | 86.4                        | 78.1 | 82.9  |  |
| BERT-base     | ٠            | 92.4              | 93.5  | 84.6      | 85.8         | 88.7                        | 84.8 | 87.1  |  |
|               | $\Delta = 0$ | 0.2               | 0.5   | 0.0       | 1.0          | 2.3                         | 6.7  | 4.2   |  |



## To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks

| Model configuration                 | $\mathbf{F}_1$ |
|-------------------------------------|----------------|
| 🍩 + BiLSTM + CRF                    | 95.5           |
| 🏶 + CRF                             | 91.9           |
| 🔥 + CRF + gradual unfreeze          | 95.5           |
| 🚸 + BiLSTM + CRF + gradual unfreeze | 95.2           |
| 🚸 + CRF                             | 95.1           |

NER

|          | Conditio | ons          | Culture                                         |
|----------|----------|--------------|-------------------------------------------------|
| Pretrain | Adapt.   | Task         | Guidelines                                      |
| Any      | 8        | Any          | Add many task parameters                        |
| Any      | ð        | Any          | Add minimal task parameters<br>Hyper-parameters |
| Any      | Any      | Seq. / clas. | 🎯 and 🔥 have similar performance                |
| ELMo     | Any      | Sent. pair   | use 🥹                                           |
| BERT     | Any      | Sent. pair   | use 🤚                                           |

# **Analyzing Layer-wise Transferability**



The first layer of contextualization in recurrent models (original and 4-layer ELMo) is consistently the most transferable

Transformer-based contextualizers have no single most-transferable layer; the best performing layer for each task varies, and is usually near the middle.

## **Analyzing Layer-wise Transferability**



- Higher layers in recurrent models consistently achieve lower perplexities.
- The layers of the ELMo (transformer) model do not exhibit such a monotonic increase. While the topmost layer is best

#### **Analyzing Layer-wise Transferability**



Contextualizer layers trade off between encoding general and task-specific features.

### Universal Language Model Fine-tuning for Text Classification ACL18



$$egin{aligned} & heta_t^l = heta_{t-1}^l - \eta^l \cdot 
abla_{ heta^l} J( heta) \ &\eta^{l-1} \ = \ \eta^l/2.6 \end{aligned}$$

- The model layers are **progressively unfrozen** (starting from the final layer) during the finetuning process.
- Higher-level LSTM layers are less general (and more pretraining task-specific), they likely have to be finetuned a bit more in order to make them appropriately task specific.

#### **Transferring Between Tasks**

| Pretraining Task                          | Layer Average<br>Target Task Performance |       |       |       |  |  |
|-------------------------------------------|------------------------------------------|-------|-------|-------|--|--|
|                                           | 0                                        | 1     | 2     | Mix   |  |  |
| CCG                                       | 56.70                                    | 64.45 | 63.71 | 66.06 |  |  |
| Chunk                                     | 54.27                                    | 62.69 | 63.25 | 63.96 |  |  |
| POS                                       | 56.21                                    | 63.86 | 64.15 | 65.13 |  |  |
| Parent                                    | 54.57                                    | 62.46 | 61.67 | 64.31 |  |  |
| GParent                                   | 55.50                                    | 62.94 | 62.91 | 64.96 |  |  |
| GGParent                                  | 54.83                                    | 61.10 | 59.84 | 63.81 |  |  |
| Syn. Arc Prediction                       | 53.63                                    | 59.94 | 58.62 | 62.43 |  |  |
| Syn. Arc Classification                   | 56.15                                    | 64.41 | 63.60 | 66.07 |  |  |
| Sem. Arc Prediction                       | 53.19                                    | 54.69 | 53.04 | 59.84 |  |  |
| Sem. Arc Classification                   | 56.28                                    | 62.41 | 61.47 | 64.67 |  |  |
| Conj                                      | 50.24                                    | 49.93 | 48.42 | 56.92 |  |  |
| BiLM                                      | 66.53                                    | 65.91 | 65.82 | 66.49 |  |  |
| GloVe (840B.300d)                         | 60.55                                    |       |       |       |  |  |
| Untrained ELMo (original)                 | 52.14                                    | 39.26 | 39.39 | 54.42 |  |  |
| ELMo (original)<br>(BiLM on 1B Benchmark) | 64.40                                    | 79.05 | 77.72 | 78.90 |  |  |

Table 3: Performance (averaged across target tasks) of contextualizers pretrained on a variety of tasks.

- ELMo (original) architecture
- The training data from each of the pretraining tasks is taken from the PTB.
- Noncontextual baseline (GloVe)
- Randomly-initialized, untrained ELMo (original) baseline
- The ELMo (original) model pretrained on the Billion Word Benchmark

#### **Transferring Between Tasks**

| Pretraining Task                          | Layer Average<br>Target Task Performance |       |       |       |  |
|-------------------------------------------|------------------------------------------|-------|-------|-------|--|
|                                           | 0                                        | 1     | 2     | Mix   |  |
| CCG                                       | 56.70                                    | 64.45 | 63.71 | 66.06 |  |
| Chunk                                     | 54.27                                    | 62.69 | 63.25 | 63.96 |  |
| POS                                       | 56.21                                    | 63.86 | 64.15 | 65.13 |  |
| Parent                                    | 54.57                                    | 62.46 | 61.67 | 64.31 |  |
| GParent                                   | 55.50                                    | 62.94 | 62.91 | 64.96 |  |
| GGParent                                  | 54.83                                    | 61.10 | 59.84 | 63.81 |  |
| Syn. Arc Prediction                       | 53.63                                    | 59.94 | 58.62 | 62.43 |  |
| Syn. Arc Classification                   | 56.15                                    | 64.41 | 63.60 | 66.07 |  |
| Sem. Arc Prediction                       | 53.19                                    | 54.69 | 53.04 | 59.84 |  |
| Sem. Arc Classification                   | 56.28                                    | 62.41 | 61.47 | 64.67 |  |
| Conj                                      | 50.24                                    | 49 93 | 48 42 | 56.92 |  |
| BiLM                                      | 66.53                                    | 65.91 | 65.82 | 66.49 |  |
| GloVe (840B.300d)                         | 60.55                                    |       |       |       |  |
| Untrained ELMo (original)                 | 52.14                                    | 39.26 | 39.39 | 54.42 |  |
| ELMo (original)<br>(BiLM on 1B Benchmark) | 64.40                                    | 79.05 | 77.72 | 78.90 |  |

Table 3: Performance (averaged across target tasks) of contextualizers pretrained on a variety of tasks.

• Bidirectional language modeling pretraining is the most effective on average.

 Stronger results from training on more data (the ELMo original BiLM trained on the Billion Word Benchmark).

#### **Transferring Between Tasks**

 Pretraining on syntactic dependency arc prediction (PTB), CCG supertagging, chunking, the ancestor prediction tasks, and semantic dependency arc classification all give better performance than bidirectional language model pretraining.

# Outline

- Author
- Tasks
- Model
- Experiment
- Multilingual BERT
- Conclusion

## **Multilingual BERT**

- <Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT>
- Except with data from Wikipedia in 104 languages.
- Training makes no use of explicit cross-lingual signal
- WordPiece modeling strategy allows the model to share embeddings across languages
- Subsample words from languages with large Wikipedia and oversample words from languages with small Wikipedia
- Zero shot cross-lingual transfer, also known as single source transfer, refers to training and selecting a model in a source language, often a high resource language like English, then transferring directly to a target language.

#### **Does mBERT vary layer-wise?**



(e) Dependency parsing (LAS)

# **Does mBERT retain language specific information?**

- Since mBERT does so well at learning a crosslingual representation, it may do so by abstracting away from language specific information, thus losing the ability to distinguish between languages.
- Task : Language identification
- Across all tested layers around 96% accuracy
- mBERT needs to retain enough language-specific information to perform the cloze task and select language-related subwords.



#### Conclusion

- CWRs (上下文词表征)编码了语言的哪些feature?
  - 在各类任务中, BERT>ELMo>GPT, 发现 "bidirectional" 是这类上下文编码器的必备要素
  - 相比于其他任务,编码器们在NER和纠错任务表现较差 => 没有捕获到这方面信息
  - 在获得CWRs编码后,再针对任务增加MLP(relu)或者LSTM会提升效果
  - 引出了问题:什么时候直接fine-tune编码器?什么时候freeze编码器,增加task-specific layer?
- 编码器中不同层的transferability是怎样变化的?
  - 对于ELMo(LSTM)来说,靠前的层更transferable,靠后的层更task-specific
  - 对于transformer来说,靠中间的层更transferable,但是把各个层加权起来的效果会更好
  - 模型是有trade off的,在任务上表现越好,迁移性越差
- 预训练任务会对任务和transferability有怎样的影响?
  - 双向语言模型预训练出来平均效果越好
  - 预训练任务越接近特定任务,在特定任务的表现越好
  - 预训练数据越多,表现越好

# Thanks!